UING NATURE

Annual Conference 2019

Modelling erosion and sediment transport to inform Payment for Ecosystem Services schemes

Barbara Benisiewicz¹, Andrea Momblanch¹, Alister Leggatt² and Ian Holman¹ ¹ Cranfield Water Science Institute, Cranfield University; ² Affinity Water Ltd.

Introduction

Erosion and the associated redistribution of sediment increases water treatment requirements and, thereby, associated costs [1]. Erosion may also have an impact on productivity of agricultural soils [2].

Catchment management solutions can reduce multiple impacts simultaneously but may involve significant costs [3].

Payment for Ecosystem Services (PES) schemes helps determining the range of benefits provided by nature-based solutions and identifying service buyers and sellers [4].

Modelling tools are useful to design catchment management measures and assess their efficacy [5], and have potential to inform PES.

Tool: WaTEM-SEDEM [7]

Materials & methods

Case study: River Wey catchment [6]

- Water erosion (RUSLE)
- Transport capacity
- Tillage erosion

TSE = TSP - TSD - TPD

TSE: total sediment export, TSP: total sediment production, TSD: total sediment deposition, TDP: total pond deposition

Catchment measures for sediment reduction

- 24 retention ponds of 2 ha on arable fields with average size of 86 ha and 10 ha in urban areas; assumed depth of 1m.
- Cover crops in all arable land: Reduction of RUSLE C factor and transport capacity
- Buffer strips around all arable field parcels bordering the river and its tributaries

Ecosystem Services buyers and sellers

Measure	ES seller	Ecosystem service benefit [8]	ES buyer
1 - Ponds	Farmers &	Wild animals and their outputs	Recreationists (fishermen)
	local	Buffering and attenuation of mass flow	Water companies
	authorities	Flood protection	Local councils
2 - Cover crops	Farmers	Fibres and other materials from plants	Businesses
		Mass stabilisation and control of erosion rates	s Farmers
		Buffering and attenuation of mass flow	Water companies
		Pest control	Farmers
3 - Buffer strips	Farmers	Mass stabilisation and control of erosion rates	s Farmers
		Buffering and attenuation of mass flow	Water companies
		Pest control	Farmers

Cost-Benefit analysis

- Cost = Investment + Annual maintenance + Annual opportunity cost —
- Benefit = Annual benefit _
- A scenario is considered to provide higher future returns than costs when it results in higher values of the Net Present Value (NPV)

Rt: Net benefit = Benefit - Cost n: 10-year period i: 5% discount rate

Cranfield

University

Affinity Water

Results

Baseline

- 6.26% with respect to the observed sediment loads.
- introduced retention ponds and grass buffer strips:

Catchment management scenarios

Conclusions

- WaTEM-SEDEM can be helpful for decision makers in planning the type and location of catchment management measures for sediment reduction.
- The combined use of models and cost-ES benefit analysis can support the development of Payment for Ecosystem Services schemes as basis for implementation of nature-based solutions.

References

[1] C.g. Lee, T.D. Fletcher, G. Sun (2009) Engineering in Life Sciences 9(1), 11 [2] Natural Capital Committee (2019) Advice on soil management. Tech. rep., UK Government [3] D. Pimentel, L. Lach, R. Zuniga, D. Morrison (2000) BioScience 50(1), 53 [4] S.S. Sayre (2018) Environmental and Resource Economics pp. 1-35 [5] A. Luke, J. Hack (2018) Sustainability 10(2), 346 [6] Benisiewicz et al. (under rev.) Environmental Modelling and Assessment. [7] Van Rompaey et al. (2001) Earth Surf. Process. Landf. 26 (11), 1221–1236 [8] Haines-Young, R. & Potschin, M. B. (2018) CICES V5.1